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CONCERNING THE NEGATIVE PART OF THE SPECTRUM OF
ONE-DIMENSIONAL AND MULTI-DIMENSIONAL

DIFFERENTIAL OPERATORS _ON VECTOR-FUNCTIONSt I

I. M. Glooman

The present note is devoted to an extension of theorems of /421*

note [la], that supplements earlier obtained results [lb] con-

cerning the spectrum of single-dimensional and multi-dimensional

differential operators on vector-functions. -.

Let ~ 2(0,°) be a Hilbert space of vector-functions y(x)=

k}k=l(m<-) with scalar product

m

/y, z~ = I Y~ Y~ ¢t rzIx> dx',
O k-1

and l[y] be a differential operation of the form

I [ ( )--n)y(2' +Q(X)y (0 x < oo) (1i)

where Q(x) is a Hermnite matrix-function of the m-th order. The

least and, respectively, the greatest eigenvalue of matrix Q(x)

let us designate by p(x) and v(x). By L let us designate any

self-adjoint expansion of an operator with minimal area of deter-

mination generated in 12(0,) by operation (1). The negative

part of any function f(x) let us designate by f*(x), such that

f*(x) = min'{0,f(x)}.

The use of lemma 1 off.note [la], where one must replace

functional D ~[y] by functional
e
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(k[y]=\ - 4(X) |dx± +i Qjh (X) g (X) Yh (X) dx +
o kl. O 1, Ik-

+S i yh (x) i dx,
o k-1

leads to the following results.

Theorem 1. If in the case of any 6>0 is fulfilled the in-

equality

i Il'(x) I< dx<o,

where M is the set of values x, for which jp*(x)>_6, then the

negative part of the spectrum of operator L is bounded below and
discrete.

Assuming, further,

2n

= (2n -1)!! = (2,-- [ in-I

- 2.n2 _ n(4 _ _N2 (-i C h- - (t -.-2

: = 3 A'n- - in-3-/ J (2nL k

let us mention the following two theorems.

Theorem 2. The negative part of the spectrum of operator

L consists of a finite number of eigenvalues, if one of the' fol-

lowing conditions is fulfilled:

1. i(x)> -- 2x 2n in the case of large x.-- n
2. In the case of any 6>0

S X*2 ' 1 (X)Idx< 3Q,

where M
6

is the set of values x for which

l P"(X) > (, -- 2) x-2n. 
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3. In the case of some p>l

S X2n' - 1 ' (x) IP dx< C.
0 t.

Theorem 3. The negative part of the spectrum of operator

t is an infinite set if one of the following conditions is ful-

filled:

1. In case of some 6>0 and large x

,/ , (x) <._:(2 + 4'
. iX

Ir

v(x0) ':0 in case of large values of x and

liM inf p2'l X) I dx> .4.
* .

3. v(x) < a2X. 2 n in the case of large x andnrn

copp
lim inftIn sx o d(x)f.ax2n l dx > B2,.

4. 

I(x)dx= - o.

In conditions 2 and 3 one can replace lim inf by lim .

Theorems 1-3 are connected with the oscillation properties

of-the system of differential equations

(-- 1 )"y(2n) + Q (X) y=y (= Y 0), |

that were studied by Sternberg [2] in the case of n = 1. Condi-

tions 1 of theorem 2 and 1 of theorem 3 give an extension of the /423

well-known theorem of Knezer concerning the oscillation of solu-

tions of a differential equation of the second order. In the case

of n = 1 one can obtain the following refinement of condition 1 of

theorem 3 that for the case of a differential equation of the
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second order was given by Hille [3] (see also [4]).

Theorem 4. If in the case of some 6>0 and some natural r

for all sufficiently large values of x occurs the inequality

Y (X) <i ,i.: in 1 * .", .xi n =. .. I. n.'x

where inkx = lnlnklx, then the negative part of the spectrum of

operator L consists of a finite number of eigenvalues.

The presented results are partially extended to multi-dimen-

sional differential operations on.vector-functions of the form

[u= - au + Q (P)u, (2)

where P is a point of n-dimensional Euclidean space'XJ; Q(P) is a

Hermitian matrix-function of the m-th order determined in all_!I.

Operation (2) generates in Hilbert space -2(1
)

of vector-

functions u(P) ='{uk(P)}=l with scalar product
k k

(U, V) = i x~ uh (P) VI, (P.), dop

some differential operator L with a minimum area of determination.

Let p(P) be the least eigenvalue of matrix Q(P) and P*(P)

= min{0, p(P)}. Let us present, for example, a formulation of

the theorem that corresponds to theorem 1, and let us prove it

for m = 1, n = 2 (in this case V(P) = Q(P)).

Theorem 5. If in the case of 6>0 the integral

O ,

S I (P)l dr,
where

-. ; (O. {(P) > i,
(P) - (P)l<
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converges uniformly along angular coordinates, then:

1) operator L with a minimum area of determination (see

[lc]) is self-adjoint;

2) the negative part of the spectrum of operator L is

semi-bounded below and discrete (that is, consists of eigenvalues

of finite multiplicity with a single possible limiting point A = 0)..

Proof. Converting the quadratic functional

, [u]=SSVui 2rdrd,+9\ Qi2r vrdt+s u a 2rdrd?

to any finite function uiEjDL with the help of the substitution of

variables u/ r = v, let us obtain

I [U I VU 12 dr d? 1;Q (ri o)41 · U |drd a+jS I V Jdr d'?

In the case of randomly assigned c (O<1<i) let us select a -/424

number N such that there would be

I Q -r 'e) ! X, <

and let us show that the functional

q',[1} = d~? Vvj{+ [Q°(r. -) + 'I ] {v{ dr

is nonnegative on any finite function v']JDL that equals zero in

the range r<N.

From the Cauchy-Bunyakovsky inequality it follows that

Ia-oN' -, d!iN( . d

where the function v(r, ~) is normalized by the condition

Sd?ilvj-dr= I
o N
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and

v(p)= max v(r, c)f.
Ner< :l

Let us consider two cases separately:

2n onn.

In the first case
2x7to 2ne 

(XDu , k 2(r, )jU drd?+e Slvl;drd?
oA' oN

o N0 N

In the second case

"·C 2 2, co

Otl(D 3>-4 -C v (~k- d?- + \ Q(r, ?j) I (,) l2 dr d?,
0 oN

such that

'u >-- i S (?)I do L l (?) d?-- - >0, 

and inequality. [u]>O is established.

From the given inequality first of all follows rld] the semi-

boundedness of operator L below, and from. that, according to a

theorem of A. Ya. Povzner, the self-adjointness of operator L

follows.

Further from this inequality on the basis of Eld] and of

lemma 1 [la] let us conclude that the negative part of the spectrum

of operator L is discrete. The theorem is proven.

V. I. Lenin Kharkov Polytechnical Institute
Received October 24, 1957
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